On the Diophantine equation $x\sp 6\sb 1+x\sp 6\sb 2+x\sp 6\sb 3=y\sp 6\sb 1+y\sp 6\sb 2+y\sp 6\sb 3$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propionibacterium acnes in Human Health and Disease

1 Centre for Stratified Medicine, School of Biomedical Sciences, University of Ulster, Altnagelvin Hospital, Londonderry BT47 6SB, UK 2Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT7 9BL, UK 3Department of Human Pathology, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan 4 School of Life and ...

متن کامل

On the Diophantine Equation x^6+ky^3=z^6+kw^3

Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...

متن کامل

On the Diophantine Equation

In this paper, we study the Diophantine equation x2 + C = 2yn in positive integers x, y with gcd(x, y) = 1, where n ≥ 3 and C is a positive integer. If C ≡ 1 (mod 4) we give a very sharp bound for prime values of the exponent n; our main tool here is the result on existence of primitive divisors in Lehmer sequence due Bilu, Hanrot and Voutier. When C 6≡ 1 (mod 4) we explain how the equation can...

متن کامل

On the Diophantine Equation

= c for some integers a, b, c with ab 6= 0, has only finitely many integer solutions. Stoll & Tichy proved more generally that if a, b, c ∈ Q and ab 6= 0, then for m > n ≥ 3, the above equation has only finitely many integral solutions x, y. Independently, Rakaczki established a more precise finiteness result on this binomial equation and extended this result to more general equations (see Acta...

متن کامل

On the Diophantine Equation

If a, b and n are positive integers with b ≥ a and n ≥ 3, then the equation of the title possesses at most one solution in positive integers x and y, with the possible exceptions of (a, b, n) satisfying b = a + 1, 2 ≤ a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347. The proof of this result relies on a variety of diophantine approximation techniques including those of rational approximation to hypergeometri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1992

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1992-1134725-3